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DESIGN OF EDGE DETECTORS FOR REDUCED IMAGES

1. INTRODUCTION

The development of algorithms to extract informational

features from imagery is an area of active research. These

algorithms enable computerized devices to automatically

locate and identify objects in the field of view of a

sensor. An important Air Force application is automatic

target identification and weapon guidance.

Practical implementation of feature extracting

algorithms is constrained by size, weight, power and data

throughput requirements imposed by the particular

application. These constraints limit the amount of

computation that can be accomplished on the input image

data. In order to allow more of the available computational

time and hardware to be devoted to sophisticated and

computationally intensive feature classification routines,

it is desirable to minimize the preliminary feature

extracting calculations.

One approach to the problem of reducing calculations is

to map the original intensity image into a smaller image

before applying feature extracting algorithms. Several such

image data reducing techniques were implemented in [11,

followed by standard (Roberts [2-4] and Kirsch [2,3]) edge

detecting operations on the reduced images. Since edges in
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an image contain much of the information necessary to

classify objects, edge detectability and edge quality were

used in that work as measures of feature information loss.

The outputs of the standard edge detectors were

quantitatively evaluated to determine the effect of the

image reducing techniques on edge content.

For the image reducing techniques implemented in [I],

it is evident that the straightforward application of

standard edge detectors to the reduced images does not fully

extract the edge information that is available. This is

demonstrated by the substantially better results achieved by

applying the Kirsch operator to re-expanded versions of the

reduced images. The re-expansion was accomplished by simply

duplicating reduced image picture elements (pixels), so the

information content would seem to be unaffected. The

two-step sequence of re-expansion followed by Kirsch edge

detection is equivalent to a new edge detection scheme

operating on a reduced image and generating multiple output

pixels for each input pixel. The re-expansion operation

inherently incorporates knowledge of the original image

size, adding information that was not available in the

reduced image. However, the two-step sequence does not

incorporate any knowledge of the reducing technique used.

The purpose of this research is to find techniques for

extracting edges from reduced images based on knowledge of

the specific image reducing techniques used. Incorporating
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knowledge of the image reducing techniques used should

result in edge outputs that are more representative of the

edge information available in reduced images.

The search for better ways to extract edges from

reduced images leads naturally to consideration of how the

image data should be reduced in the first place. As a

result this investigation centers on finding methods for

reducing an image so as to maximize the retention of edge

information which is subsequently extracted. Since lower

mean-square error (MSE) in the intensity domain was usually

(with one exception) found to correspond to lower MSE in the

edge domain in [II, The Hotelling transform [2,5] (also

called the discrete Karhunen-Loeve transform [2,41) is

initially investigated. The Hotelling transform minimizes

the intensity mean-square error (IMSE) between an original

image and one that has been reconstructed by an inverse

Hotelling transformation using partial transform

coefficients (i.e. reduced image data). Subsequently a

measure of edge loss called the gradient mean-square error

(GMSE) based on the Roberts gradient is defined, and the

relationship between GMSE and IMSE is derived. Finally, a

linear transformation is introduced which reduces an image

based on minimizing GMSE (and in that sense maximizing edge

retention).

3



2. OBJECTIVE

The primary purpose of this research Is to find

techniques for extracting edges from reduced images based on

knowledge of the specific image data reducing techniques

used.
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3. EDGE EVALUATION TECHNIQUES

Several techniques are used in subsequent sections of

this report to compare edges in original and reconstructed

images. Three original 256 by 256 images differing in edge

content are used in this study. They are shown in Figure I

and will be referred to as Image A (upper left), Image B

(upper right), and Image C (lower left).

It is difficult to find edge evaluation techniques

applicable to real-world imagery. This is due in part to

the inability to clearly define the actual location of edges

in an image and thus form a reliable basis for comparison.

However, a paper by Kitchen and Rosenfeld [41 proposes an

edge quality evaluation based on edge coherence

incorporating connectedness, thinness, and gradient

directions as seen by 3x3 neighborhoods. The specific

implementation used here is described in (1]. In this

implementation a Kirsch edge detector is applied to an

image. Each pixel location in the resulting Kirsch image

that has a Kirsch response equal to or greater than a

selected threshold is assigned an edge coherence value

E - wC + (1-w)T (3.1)

where C and T are measures of edge continuity and thinness,

respectively, and w is a weighting factor. E, C, T, & w are

constrained to lie in the interval [0,11. In this study w -

0.8 as recommended in [61. The average value of E for a

selected threshold is used as an overall measure of Image

5



edge quality.

In order to determine the edge retaining abilities of

an image data reducing technique some measure of the edge

information lost in the transformation is needed. One such

measure based on the Roberts edge detector [2-5] is obtained

by calculating a gradient vector G at each pixel in the

original and reconstructed images and determining the

mean-square error between the original and reconstructed

gradient vectors. This gradient mean-square error (GMSE) is

used as a measure of edge information loss. For a pixel

X(p,q) at image location (row,column)=(p,q) the specific

gradient used was defined as

G=0.5*l*[(X(p,q-1) + X(p,q)) - (X(p-l,q-1) + X(p-l,q))]

+0.5*J*[(X(p-l,q) + X(p,q)) - (X(p-1,q-1) + X(p,q-1))]

(3.2)

where I and J are unit vectors in the directions down and

right, respectively, and * represents multiplication.

Two other MSE based measures were obtained by operating

on original and reconstructed images using the Roberts (or

Kirsch) edge detector and calculating the resulting MSE

between the original and reconstructed edge images averaged

over all pixel locations to obtain the Roberts (or Kirsch)

MSE. A fourth MSE measure which will be referred to as the

thresholded Kirsch MSE is obtained by calculating the Kirsch

MSE averaged over only those pixel locations where the

6



Kirsch response is equal to or greater than a selected

threshold.

The last edge comparison technique implemented uses an

approach from signal theory which calculates the

probabilities of edge detection PD and false alarm PF.

These calculations use binary reference and test images

generated by globally thresholding the edge detector output

images. The resulting edge pixels are compared to give PD

and PF where:

PD is the fraction of edge pixels in the reference image

that are correctly classified as edge pixels in the test

image;

and

PF is the fraction of non-edge pixels in the reference image

that are incorrectly classified as edge pixels in the test

image.
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4. IMAGE DATA REDUCTION USING THE HOTELLING TRANSFORM

Since lower MSE in the intensity domain was found in

[1] to strongly correlate with lower MSE in the edge domain,

the effect of the Hotelling transform on edge retention is

studied here. The Hotelling transform minimizes the IMSE

between an original image and one that has been

reconstructed by an inverse Hotelling transformation using

partial transform coefficients. As in [i], this

investigation concentrates on 4:1 data compression.

The Hotelling transform was implemented by partitioning

an image into adjacent non-overlapping N by N blocks. Each

N by N block is row scanned to form a vector X with N**2

elements, where ** represents exponentiation. Using

notation similar to that in [5], a complete set of N**2

Hotelling transform coefficients forming a vector Y could be

calculated using

Y = A(X - MX) (4.1)

where the vector MX is the ensemble mean of the vector X

averaged over all blocks in the image, and A is an N**2 by

N**2 matrix whose rows are the eigenvectors of the image

covariance matrix

CX = E {(X - MX)(X - MX)'} (4.2)

where E is the expectation operator averaged over all blocks

in the image and the prime (') indicates transposition. To

achieve image data reduction ISAVE coefficients are

generated (ISAVE < N**2) using an ISAVE by N**2 matrix A.
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For a specified amount of data compression the Hotelling

transform minimizes the IMSE in the reconstructed image by

choosing the rows of A to be the ISAVE eigenvectors

corresponding to the ISAVE largest eigenvalues of the

covariance matrix CX. To achieve 4:1 image data reduction

ISAVE = (N**2)/4 was used. For each N by N block a

transform coefficient vector Y with dimension ISAVE is

generated. Images are reconstructed a block at a time from

the reduced image data using the inverse Hotelling

transformation

XEST - A'Y + MX (4.3)

where XEST is the reconstructed estimate of X.

For various values of N the test images were data

compressed and reconstructed using the Hotelling transform.

Then the evaluation techniques described in the previous

section were applied to the reconstructed images.

For comparison purposes these same evaluation

techniques were also applied to images which had been

reduced by simply averaging 2 by 2 blocks and then

reconstructed by pixel duplication. The results are shown

in Tables I & 2. Table I values were calculated for all

three test images. Table 2 values were calculated for Image

A only using a threshold value of 99 which corresponds to a

maximum average value of edge coherence E for the original

Image A. The column labelled CDE in Table 1 will be defined

in the next section.
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As is well known, for any specified amount of

compression the reconstructed IMSE using the Hotelling

transform tends to decrease as the block size increases.

This trend is evident in Table 1. The Hotelling transform

accomplishes this by taking advantage of correlations that

exist between neighboring pixels. As N gets larger than the

maximum distance between pixels with significant

correlation, a plot of IMSE versus N would tend to level

off. From Table 1 there appears to still be significant

correlation between pixels separated by a distance of 8

since IMSE is still dropping rapidly for N=8. The simple

averaging of 2 by 2 blocks is unable to take advantage of

correlations of pixels separated by distances greater than

one. Therefore, as expected, the Hotelling transform offers

substantially better IMSE performance than simple averaging.

Notably, the edge evaluating measures shown in Tables 1 & 2

also demonstrate that the Hotelling transform has

significantly better edge retaining ability than simple

averaging.

A major obstacle to the use of the Hotelling transform

in real-time encoding environments is the calculation of the

eigenvectors of the block covariance matrix CX for each

image. It may however be possible to generate a single

Hotelling transform matrix A based on some selected

covariance matrix that will retain edges satisfactorily over

a wide variety of images. If necessary a small set of
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selectable A matrices might be stored for real-time use. To

study the sensitivity of edge retention to the particular

transformation matrix A used, the test images were reduced

and reconstructed using Hotelling transformations based on

each others covariance matrices. The resulting GMSE values

are given in Table 3. Images B and C appear quite

insensitive to the specific covariance matrix used. Image

A, which contains the most edges, is the most sensitive to

the covariance matrix selected. Covariance matrix selection

based on the type of terrain being viewed should be

practical.
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5. RELATIONSHIP BETWEEN GMSE & IMSE

As noted in the previous section, there appears to be a

strong correlation between IMSE and the edge domain

measures. In this section the edge loss measure GMSE is

found to be related to the IMSE by

GMSE = 2*(IMSE - CDE) (5.1)

where CDE is the correlation of diagonal errors defined by

CDE=0.5*EI[X(p,q-I)-(XEST(p,q-1)]*[X(p-I,q)-XEST(p-I,q)]

+ [X(p,q)-XEST(p,q) ]*X(p-l,q-l)-XEST(p-I,q- I

(5.2)

where XEST is the reconstructed estimate of X, and E is the

expectation operator. Here E may be thought of as a spatial

operator that averages over all pixel locations (p,q) in an

image, or equivalently it may be thought of as a combination

of a spatial operator averaging over an N by N block of an

image and an ensemble operator averaging over all such

blocks in an image. Both viewpoints will be used in the

sequel.

From its definition the CDE is seen to be a measure of

the correlation of the reconstruction error between diagonal

neighbors. For example, if a hypothetical transform

resulted in a reconstructed image that was merely the

original image decreased by 5 intensity units at all pixel

locations (i.e. XEST(p,q) - X(p,q)-5 for all (p,q)), then

diagonal errors would be totally correlated and the diagonal

intensity differences upon which the gradient is based would

12



be unaffected (as would all edge information). In such a

hypothetical case IMSE=CDE-25 and GMSE-0. However, as seen

in Table 1, the Hotelling transform consistently results in

negative CDE values, causing GMSE to be greater than 2*IMSE.

Proof of Relationship:

The GMSE is the expected value of the square of the

norm of the gradient error defined by

GMSE = E {l G(p,q) - GEST(p,q) 1i*2) (5.3)

where 11 11 denotes the norm, GEST(p,q) represents the

estimate of the gradient at location (p,q) obtained from a

reconstructed image, and the expectation operator E is

defined as described earlier. This may be written making

the spatial averaging over an N by N block explicit and

reducing E to a mere ensemble expectation as shown on the

next page.

13



N N

GMSE 1: E i E
4*N**2 p=1 q=1

(X(p,q-1) - XEST(p,q-1))

+ (X(p,q) - XEST(p,q))

- (X(p-l,q-1) 
- XEST(p-l,q-1))

- (X~p-l,q) - KEST(p-l,q))]**2

+ E(X(p-1,q) - XEST(p-I,q))

+ (X(p,q) - XEST(p,q))

- (X(p-1,q-1) - XEST(p-l,q-1))

- (X(p,q-1) - XEST(p,q-1))]**2J

N N

E 1: E
4*N**2 p=i q=1

2*[ (X(p,q-1) - XEST(p,q-.1))**2

+ (X(p,q) - XEST(p,q))**2

+ (X(p-l,q-1) - XEST~p-l,q-1))**2

+ (X(p-l,q) - XEST(p-.1,q))**2]

-4*[ (X(p,q-1) - XEST(p,q-1))

*(X(p-l,q) - XEST(p-l,q))

+ (X(p,q)-XEST(p,q))

*(X(p-l,q-1)-XEST(P-1,q-1))] (5.4

which reduces to

GMSE = 2*(IMSE - CDE)(5)

Note that the gradient at pixel locations in the top row and

left column of an N by N block depend on neighboring pixels

above and to the left of the block. The above notation is

based on the top row and left column of neighbors being

14



designated row 0 and column 0, respectively.

Within minor roundoff errors this relationship is

verified by Table 1. For example using N-4 on Image A gives

CDE - -76 and IMSE - 371 for a calculated GMSE of

GMSE - 2*(371 + 76) - 894

which is reasonably close to the simulated value of 887.

15



6. A GMSE BASED LINEAR TRANSFORMATION

The gradients of an N by N block of pixel locations

within an image form a gradient block which depends on the

border pixels at the top and to the left of the N by N

block. A linear transformation is introduced which

individually encodes and data compresses overlapping (N+l)

by (N+l) intensity blocks so as to minimize the resulting

GMSE for the N by N gradients which are calculated for each

reconstructed intensity block. This formulation allows each

N by N gradient block to be independently reconstructed

using the transform coefficients generated from its

corresponding (N+l) by (N+I) intensity block. As with the

Hotelling transform, the (N+l) by (N+l) pixels in each

intensity block are row scanned to form a vector with

(N+l)**2 elements, where ** represents exponentiation. A

complete set of (N+I)**2 transform coefficients could be

obtained by multiplying this vector by an (N+I)**2 by

(N+1)**2 matrix A. To achieve data compression ISAVE

coefficients are generated (ISAVE < (N+1)**2) using an ISAVE

by (N+I)**2 matrix A. To minimize IMSE the Hotelling

transform chooses the rows of A to be eigenvectors of the

image block covariance matrix.

To determine the matrix A that minimizes GMSE a set of

summations describing the GMSE as a function of the matrix A

16



and block covariance matrix was derived. (This equation is

derived at the end of this section and implemented in the

attached Fortran 77 Subroutine DGMSE.) For a given block

size, block covariance matrix, and specified data

compression, the matrix A that minimizes GMSE was found

numerically using a steepest descent algorithm based on an

article by Fletcher and Powell [7]. This algorithm required

the derivation of an equation describing the gradient of the

function GMSE. (This equation is implemented in the

attached Subroutine DGGMSE.)

The eigenvectors used by the Hotelling transform were

used to form an initial guess for the matrix A that would

minimize GMSE. The optimal matrix A was then calculated

using the Fletcher-Powell search technique. For several

combinations of N and ISAVE, Table 4 compares the resulting

GMSE using the Hotelling eigenvector matrix to the GMSE

achieved using the optimal matrix A. The theoretical values

were obtained using the GMSE equation implemented in

Subroutine DGMSE. The simulated values were obtained by

actually transforming, data compressing, intensity

reconstructing, and independently calculating the gradients

in reconstructed overlapping (N+1) by (N+I) intensity blocks

of Image A. Compared to the Hotelling transform, the

optimal matrix A resulted in 18% to 52% lower GMSE in the

cases studied.

Calculation of the optimal matrix A using the iterative

17



Fletcher-Powell algorithm is quite computationally

intensive. For N=6 and ISAVE-9, a moderate block size, the

matrix A consists of 9*(6+l)**2 = 441 elements. The

Fletcher-Powell algorithm seeks to find the resulting

441-dimensional vector that minimizes GMSE. For this

particular example 708 calls to the search routine described

in [7] were needed, consuming approximately 200 hours of CPU

time on a Data General MV 10000 computer. As with the

Hotelling transform discussed in Section 4, this

disadvantage may be overcome by storing a small set of

selectable pre-calculated A matrices for real-time use.

The optimal matrix A described above minimizes the GMSE

of gradient blocks in an image that are reconstructed

independently. Similarly an optimal matrix A calculated for

an entire image (based on an ensemble covariance matrix)

without partitioning the image into blocks would achieve

minimum GMSE over all linear transformations (although

calculating A for entire images would be computationally

prohibitive using iterative search techniques such as the

Fletcher-Powell algorithm). However the independent

reconstruction of adjacent gradient blocks does not allow

correlations between adjacent blocks to be exploited. Using

the Hotelling transform on non-overlapping N by N intensity

blocks to data compress and reconstruct an entire intensity

image, followed by gradient calculations on the

reconstructed intensity image takes advantage of

18



block-to-block correlations. Table 5 compares the GMSE for

dependently reconstructed gradient blocks obtained using the

Hotelling transform in this fashion to the GMSE obtained

using the optimal matrix A which independently reconstructs

each block. For the combinations of N and ISAVE shown in

Table 5, adjacent block correlations cause the GMSE of

independently reconstructed gradient blocks to be inferior.

For the larger block sizes shown in Table 5 the advantage of

adjacent block correlations seems to diminish. For block

sizes greater than N-6 it is not yet known which method will

result in lower GMSE. However, as stated above, if the

block size increases to encompass the entire image, the

optimal matrix A would achieve minimum GMSE while the

relative performance of the Hotelling transform is unknown.

Derivation of GMSE as a function of A and CX:

Equation 5.4 shows that the GMSE is related to the

expected value of a function of original and reconstructed

block pixel intensity values X and XEST, respectively. At

this point an expression is derived relating GMSE to the

elements of the ISAVE by (N+I)**2 transform matrix A and the

elements of the (N+I)**2 by (N+l)**2 block covariance matrix

CX. As with the Hotelling transform in Equation 4.1, the

ensemble mean for each block pixel is subtracted prior to

multiplication by the transform matrix A. Therefore the

following derivation can be simplified by assuming the image

19



block values X have zero mean which reduces Equations

4.1-4.3 to

Y = AX (6.1)

CX = E{XX'} (6.2)

XEST = A'Y (6.3)

For ease of presentation the following derivation is

based on N=4 so that 5 by 5 overlapping blocks are

transformed. The extension of the results to arbitrary

values of N is trivial. For N=4, Equation 6.1 may be

written as

N N

Y(i) = Y Y A(i,5m+n+l)*X(m,n) (6.4)
m=o n=o

where Y(i) is the ith element of Y for i from 1 to 25. Then

Equation 6.3 becomes

ISAVE

XEST(p,q) = A(i,5p+p+l)*Y(i)
i=l

ISAVE

-- Z A(i,5p+q+l)

i=l

N N

* E A(i,5m+n+l)*X(m,n) (6.5)
m=o n=o

for p and q from 0 through 4. Expanding the quadratic terms

in Equation 5.4 and taking the expectation of each resulting

product we obtain terms of the following forms:

20



E{X(p~q)X(r,s)l CX(5p+q+1,5r+s+1) 
(6.6)

E{X(p,q)XEST(r
8s))

ISAVE

E A(i,5r+s+1)
i-i

N NY* EL A(i,5m+n+1) *E{X(p,q)X(m,n))
m-o n-o

-ISAVE N4 N

E 2: A(i,5r+s+l)A(i,5m+n+l)
ii m=o n-o

* CX(5p+q+I,5m+n+l) 
(6.7)

E{XEST(p,q)XEST(r,s)}

I SAVE N N
E( A(i,5p+q4.)A(i5m+n+l)X(m,n)

i-I in-o n~o

ISAVE N N

* , , E A(i',5r+s+1)ACi'5'+l.+)
P =1 m'-o n-ao

*X(m",n')

ISAV N N ISAVE NN

i-1 m=o n-o i'm1 m'=o n-ao

A(i ,5p+q+1 )A(i ,5m+n+1 )A(i' , r+s+1 )A(i' ,5ua'+n'+1)

*CX(5m+n+1,51 3'+n'+l)) (6.8)
Using Equations 6.6 through 6.8 enables us to now rewrite
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Equation 5.4 expressing GMSE as a function of matrices A and

CX as shown on the next page.
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N N

GMSE -4*N**2 ' "
P-i q-i

2jCX(5p+q-1, Sp+q-i.')+CX(5p+q, 5p+q)

+CX(S( p-l)+q,5( p-l)+q ).iCX(5( p.- 1)+q+1,5p.- 1) +1)

-4 [CX(5p+q,5(p-l)+q+l)+CX(5p+q+1,(p..)+q)I

I SAVE N N

-4 E E 1Z A(i,5m+n+l){
i-I m=o n-o

A~i, 5p+q+.) [CX(5p+q+1,5m+n+l)

-CX(5(p-1)+q ,5m+n+I) I

+A(i ,5p+q) [CX(5p+q,5m+n+l)

-CX( 5(p-1 )+q+1, 5m+n+l) I

+A(i,5(p-l)+q)[CX(5(p-l)+q,5m+n+l)

-CX( 5p+q+1,5m+n+1) I

-CX( 5p+q, 5m+n+1)]

ISAVE N N

-0.5>:>E:F:

i'=1 m'=o n' -o

A(i',5m'+n'+1)CX(5m+n+1,5m'+n'+1)

*[A(i,5p+q+1)A(iI,5p+q+I)+A(,5p~q)A(ji,5p~q)

+A(i,5(p-l)4q)A(i' ,5(p-l)+q)

+A(i,5(p-l)+q+)A(i',(p...)+q+l)

-2*A(i,5p+q)A(L' ,5(p-l)+q+1)
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Equation 6.9, derived for N=4, can be generalized by

replacing the numeral 5 in the CX and A matrix indices by

(N+I). This generalized expression is programmed in the

attached Subroutine DGMSE wherein the matrix A described

here is row scanned to form a vector A with dimension

ISAVE*(N+I)**2.
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7. CONCLUSIONS AND RECOMMENDATIONS

The Hotelling transform which reduces image data so as

to minimize intensity mean-square error (IMSE) in the

reconstructed image was also found to have significantly

better edge retaining ability than simple averaging. The

reconstructed edges were quantitatively compared to those in

the original images using the MSE based and receiver

operating characteristic (PD and PF) measures described in

Section 3. One such measure used was the gradient

mean-square error (GMSE). Both the reconstructed IMSE and

GMSE using the Hotelling transform tend to decrease as the

encoding block size increases. An equation relating GMSE to

IMSE was developed in Section 5.

For image gradient blocks that are independently

reconstructed, Section 6 derives the linear transformation

matrix A that minimizes the reconstructed GMSE, and in that

sense maximizes edge retention. Calculation of the optimal

matrix A is quite computationally intensive. The largest

block size for which the matrix A was calculated was for

overlapping 7 by 7 intensity blocks (N-6). In this case the

GMSE obtained using the Hotelling transform on overlapping 7

by 7 intensity blocks to independently reconstruct 6 by 6

gradient blocks of Image A was 1042, 30% higher than the

GMSE-801 obtained using the optimal matrix A. However,

independent reconstruction of gradient blocks does not allow

correlations between adjacent blocks to be exploited.
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Dependent gradient block reconstruction using the Hotelling

transform on non-overlapping 6 by 6 intensity blocks,

reconstructing the resulting intensity image, and then

applying the gradient operator resulted in GMSE=729, 9%

lower than independent reconstruction using the optimal

matrix A. Apparently at this block size adjacent block

correlation plays a dominant role in determining the

reconstructed GMSE.

This research has demonstrated that the edge

information retained in a data compressed image can best be

extracted by using knowledge of the image data reduction

technique used. An optimal system design should include

selecting the image reducing technique based on the

reconstructed end product desired. For example, if the

desired end product is a gradient image, the intensity image

should be reduced so as to minimize some measure of the

reconstructed gradient error such as GMSE.

Suggested areas for future research include:

Simulations using larger block sizes comparing independent

and dependent gradient block reconstruction errors.

Development of a transform which minimizes GMSE while

including the effects of adjacent block correlation.

Development of transforms to minimize Kirsch or Sobel edge

errors.

Deve'opment of transforms for maximum edge retention based

26



on specific image covariance models.

Determine edge retaining abilities of other non-image

dependent transforms.
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Figure 1. Test Images A, B, &C
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Table 1. MSE Based Edge Comparison of Averaging vs
Hotelling Transform

ROBERTS KIRSCH
IMSE GMSE MSE MSE CDE

Image A:
Averaging: 524 1367 1393 520 -164
Hotelling N-4: 371 887 760 366 -76

6: 305 729 641 289 -63
8: 279 704 619 261 -78

Image B:
Averaging: 54 146 145 36 -19
Hotelling N-4: 34 84 70 29 -8

6: 26 62 54 21 -5
8: 23 54 48 18 -4

Image C:
Averaging: 85 226 224 59 -29
Hotelling N-4: 55 134 114 50 -13

6: 43 102 92 39 -8
8: 38 91 81 34 -8
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Table 2. Kirsch Based Edge Comparison of Averaging vs
Hotelling Transform

THRESHOLDED
KIRSCH
MSE PD PF E

Image A:
Original: 0 1 0 .780
Averaging: 231 .469 .0187 .747
Hotelling N-4: 184 .475 .0071 .791

6: 138 .541 .0061 .784
8: 116 .569 .0053 .784

PD = Probability of Detection

PF = Probability of False Alarm
E = Average Edge Coherence
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*Table 3. Sensitivity of GMSE to Image Block
Covariance Matrix CX

b N - 4; ISAVE - 4

IMAGE IMAGE
TRANSFORMED CX USED GMSE

A A 887
A B 1090
A C 1098

B A 87
B B 84
B C 85

C A 139
C B 136
C C 134
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Table 4. GMSE of Independently Reconstructed
Gradient Blocks of Image A

THEORETICAL SIMULATED
GMSE GMSE

N-2 ISAVE-2:
Hotelling: 1391 1374
Optimal: 914 902

N-3 ISAVEf4:
Hotelling: 979 965
Optimal: 727 714

N-4 ISAVEf4:
Hotelling: 1242 1227
Optimal: 1056 1042

N=6 ISAVE=9:
Hotelling: 1042 1030
Optimal: 801 790
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Table 5. Independent versus Dependent Gradient
Block Reconst ruct ion

GMSE

N=2 ISAVE=2:
Independent: 902
Dependent: 620

N=3 ISAVE=4:
Independent: 714
Dependent: 424

N=4 ISAVE=4:
Independent: 1042
Dependent: 888

N=6 ISAVE=9:
Independent: 790
Dependent: 729

33



REFERENCES

1. Donald J. Healy, "The Effect of Certain Image Data

Reduction Techniques on Edge Quality," Final Report on
work done during 1982 USAF-SCEEE Summer Faculty Research
Program sponsored by AFOSR, Aug. 1982.

2. William K. Pratt, Digital Image Processing, John Wiley
and Sons, New York, 1978.

3. Ikram E. Abdou and William K. Pratt, "Quantitative
Design and Evaluation of Enhancement/Thresholding Edge
Detectors," Proc. IEEE, vol. 67, May 1979.

4. Azriel Rosenfeld and Avinash C. Kak, Digital Picture
Processing, Academic Press, New York, 1976.

5. Rafael C. Gonzalez and Paul Wintz, Digital Image
Processing, Addison-Wesley Publishing Company, sixth
printing, 1983.

6. Les Kitchen and Azriel Rosenfeld, "Edge Evaluation Using
Local Edge Coherence," IEEE Trans. Sys. Man and Cyb.,
vol. SMC-11, Sept. 1981.

7. R. Fletcher and M. J. D. Powell, "A Rapidly
Convergent Descent Method for Minimization," Computer
Journal, pp. 163-168, vol. 6, iss. 2, 1963.

34



APPENDIx

of

Fortran Subroutines
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SUBROUTINE DCGSE(CX,A,N,ISAVE,IASIZE,ICXSIZ,RMSE)
C CALCULATE THEORETICAL GRADIENT MSE TRANSFORMING (N+1)X(N+1) BLOCKS
C AND SAVING ISAVE COEFFICIENTS.
C THE VECTOR A IN THIS SUBROUTINE IS A ROW SCANNED VERSION OF
C THE ORIGINAL ISAVE X (N+1) MATRIX A.

IMPLICIT DOUBLE PRECISION(A-H, O-Z)
DOUBLE PRECISION CXC ICXSIZ,ICXSIZ) ,A(IASIZE)
INTEGER P,Q,U,V,C,D,E,F
NI=N+l
NISQ=Nl**2
RMSE=O.DO
DO 10 P=1,N
DO 10 Q=1,N
C=NlI* (P-I )+Q
D=C+l
E=N1*P+Q
F=E+l
SUM1=2.DO*CCXCF,F)+ CXCE,E)+CX(C,
1C)+CX(D,D))-4.DO*
l(CX(E,D)+CX(F,C))

SUM2=O.DO
SUM3=0.DO
DO 20 I=1,ISAVE
U=( I-I )*N1SQ
DO 20 ML=1,N+1
DO 20 NNI=1,N+1
14-141-1
L=NNI-1
MCX=N 1*M+L+l
SUM2=SUM2+
1A(U+F)*(CX(F,MCX)-CX(C,MCX) )+
IA(U+E)*(CX(E,MCX)-CXCD,MCX) )+
1A(U+C)*(CX(C,MCX)-CX(F,MCX) )+
1A(U+D)*(CXCD,MCX)-CX(E,MCX))

DO 30 J=1,ISAVE
V-(J-1 )*NISQ
DO 30 MP1=1,N+1
DO 30 NPI=1,N+1
MP=MPI-1
NP=NP1-I
MPCX=NlI*MP+NP+l
SUM2=SUM2-0. 5D0*(A(U+F)*A(V+F)+
IA(U+E)*ACV+E)+A(U+C)*A(V+C)+
IACU+D)*ACV+D)-2.DO*
1ACU+E)*A(V+D)-2.DO*ACU+F)*ACV+ C))*
1A( V+MPCX)*CX(MPCX,MCX)

30 CONTINUE
SUM3=SUM3+SUM2*A( U+MCX)

20 SUM2=O.DO
10 RMSE=RMSE+SUMI-4.DO*SUM3

RMSE=RMSE/C4.DO*DBLECN**2))
RETURN
END
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* SUBROUTINE DGGMSE(CX,A,G,N,ISAVE,IASIZE,ICXSIZ)
C CALCULATES GRADIENT OF GMSE

IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DOUBLE PRECISION G(IASIZE),A(IASIZE),CX(ICXSIZ,ICXSIZ)
INTEGER X,Y,P,Q,C,D,E,F,U,V
NlI=N+ I
NISQ=Nl**2
X=l
Y=O

7 Y=Y+1
IF(Y.GT.NlSQ)X=X+l
IF(X.GT. ISAVE)RETURN
IF(Y.GT.NlSQ)Y=1
U=(X-I)*NISQ
IC=O
I D=O
IE=0
IF =0
SUM=O.DO
DO 10 P=1,N
DO 10 Q=1,N
C=Nl*CP-I)+Q
D=C+1
E=N 1*P+Q
F=E+ I
SUMJMN=O.DO
DO 15 J-1,ISAVE
V=(J-l )*N1SQ
DO 15 MP=0,N
DO 15 NP=O,N
MPCX=NI*MP+NP+l

15 SUMJMN=SUMJMN+(ACU+C)*AV+C)+AU+D)*A(V+D)IACU+E)*A(V+E)+
1A(U+F)*A(V+F).-2.DO*(ACU+E)*A(V+D)+IACU+F)*ACV+C) ))*
1A(V+MPCX)*CX(MPCX,Y)

10 SUM=SUM.-.5DO*SUMJMN+A(U+C)*(CX(C,Y)-CXCF,Y))+
1ACU+D)*(CXCD,Y)-CXCE,Y) )+A(U+E)*(CX(E,Y)-CXCD,Y) )+
1A(U+F)*(CXCF ,Y)-CX(C,Y))

SUMMN=0.DO
DO 20 M=0,N
DO 20 L-0,N
SUMCX=0. DO
JCX=N I*M+L+l
ICNT=O
JCNT-O
DO 25 JY=1,N

26 ICNT=ICNT+l
JCNT-JCNT+i
IF(ICNT.GT.N)GO TO 25
IF(Y.EQ.JCNT)GO TO 30
GO TO 26
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25 ICNT=O
GO TO 35

30 IC=1
SIMCX=SUKCX+CX(Y, JCX)-CX(Y+N4-1 ,JCX)

35 ICNT=N1+l
JCNT=N*NI+l
DO 45 JY=1,N

46 ICNT=ICNT-1
JCNT=JCNT- 1
IF(ICNT.EQ.1)GO TO 45
IF(Y.EQ.JCNT)GO TO 50
GO TO 46

45 ICNT=Nl+l
GO TO 55

50 ID=1
SUMCX=SUMCX+CX(Y,JCX)-CX(Y+NI-1 ,JCX)

55 ICNT=O
JCNT=N 1
DO 65 JY=1,N

66 ICNT=ICNTi-
JCNT=JCNT+l
IF(ICNT.GT.N)GO TO 65
IF(Y.EQ.JCNT)GO TO 70
GO TO 66

65 ICNT=O
GO TO 75

70 IE=l
SUMCX=SUMCX+CX(Y,JCX)-CX(Y-Nl+1 ,JCX)

75 ICNT=Nl+l
JCNT=N1SQ-1
DO 85 JY=1,N

86 ICNT=ICNT-1
JCNT=JCNT- 1
LF(ICNT.EQ.1)GO TO 85
IF(Y.EQ.JCNT)GO TO 90
GO TO 86

85 ICNT=N1+1
GO TO 20

90 IF=1
SUMCX=SUMCX+CX(Y,JCX)-CX(Y-Nl-1 ,JCX)

20 SUMMN=SUMMN+A(U+4JCX)*SUMCX
SUM=SUM+SUMMN
SUMIMN=O.DO
DO 100 I=1,ISAVE
V=(I-1)*NISQ
DO 100 K=0,N
DO 100 L=0,N
SL)MPQ=O .DO
JCX=N I*M+L+1
DO 110 P=1,N
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DO 110 Q=1,N
C=Nl*(P-1)+Q
D=C+1
E=NI*P+Q
F=E+1

110 SUMPQ=SUJMPQ+CXCY,JCX)*C
1ACV+C)*ACU+C)+A(V+D)*ACU+D)+A(V+E)*ACU+E)+A(V+F)*ACU+F)-2.D*
I (Ac V+E)*A(U+D)+AC V+F)*A(1J+C)))

100 SUMIMN=SUMIMN+A(V+JCX)*SUMPQ
SUIM=SUM-0. 5D0*SUMIMN
SUMMNP=0.DO
ACNT=DBLE( IC+ID+IE+IF)
DO 200 M=O,N
DO 200 L=O,N
DO 200 MP=O,N
DO 200 NP=0,N
SUMA=O.DO
MCX=N 1*M+L+l
MPCX=NI *MP+NP+I
SUMI=O.DO
DO 210 I=1,ISAVE

210 SUMI=SUMI+A((I-1)*NlSQ+Y)*A((I-1)*NISQ+KCX)
S IJA=SUMA+A( U+MPCX) *SUM~I
SJJMJ=O. DO
DO 220 J=1,ISAVE

220 SUMJ=SUMJ+A((J-1)*NlSQ+Y)*A((J-1)*NlSQ+MPCX)
S UMA=SUt4A+A( U+MCX) *SUMJ
S UMA=SUMA*ACNT
IF(IC.EQ.O)GO TO 259
SUNI-0.DO
DO 250 I=1,ISAVE

250 SUMI=SUMI+AC(I-1)*NlSQ4.Y+Nl+l)*A((I-1)*N1SQ+HCX)
SUM4A=SUM4A-2. DO*A(U+MPCX)*SUMI

259 IF(ID.EQ.0)GO TO 269
SUMI=0.DO
DO 260 I=1,ISAVE

260 SUMI=SUMI4.AC(I-I)*NlSQ*Y+Nl-l)*A(CI-1)*NISQ+1CX)
SlJMA=SUt4A-2 .DO*A(U+MPCX)*SUMI

269 IF(IE.EQ.0)GO TO 279
SUMJ=0.DO
DO 270 J=1,ISAVE

270 SUMJ=SUKJ+A((J-1)*N1SQ+Y-N1+l)*A((J-1)*NISQ+MPCX)
SUMA=SUtHA-2 .DO*ACU-*ICX)*SUKJ

279 IF(IF.EQ.0)GO TO 200
SUMJ-0.DO
DO 280 J-I,ISAVE

280 SUJSM+(JI*lQYN-)A(-)NS+PX
SUKA-SUMA-2 .DO*A(U+MCX)*SUMJ

200 S1JMKNP-SUMMNP+SUMA*CX(MPCX,MCX)
SUM4-SUM-O. 5D0*SUMMNP
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C(U+y)...j DO*SUM/DBLE(N**2)
GO TO 7
END
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